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ABSTRACT

How can we visualize, interact with, and ‘learn’ important struc-
tures of time-evolving networks? Given domain-speci�c a�ributes,
such as node membership of functional brain regions, how can we
use this domain knowledge to discover coherent structures and
track their evolution over time? In this demo paper, we introduce
ECOviz (for Evolving COmparative network visualization), a sys-
tem that enables pairwise comparison of temporal graph summaries
based on variations in data source and preprocessing parameters.
Our system further allows the user to perform structural and tempo-
ral analysis of a graph through e�cient querying and visualization
of its summarizing subgraphs.

ECOviz performs the following tasks: (a) It generates a set of
temporal structures for each graph of interest using a dynamic
graph summarization algorithm o�ine; (b) It supports contrasting
visual analysis of time-evolving network pairs by providing quan-
titative metrics on summary structure composition and temporal
graph statistics; (c) It interactively visualizes the induced subgraph
of each structure in a summary, at either a full time sequence or a
time interval speci�ed by the user.

In our demonstration, we invite the audience to use ECOviz to
make comparisons between a variety of time-evolving functional
human connectomes, and explore their salient temporal structures.
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1 INTRODUCTION

Given a set of nodes of interest, how can we improve the discov-
ery and visualization of salient structures in a time-evolving net-
work? �e objective of summarizing such networks is to identify
structures that are notable in their topology and/or recurrence
over time. Showing changes over time, however, demands further
knowledge of the graph’s underlying structure, and perhaps calls
for an application-driven approach. For visualization in particular,
preserving the mental map across snapshots is desirable when fol-
lowing groups of nodes [3]. �is is applicable when a user seeks to
�nd community-level pa�erns within a dynamic graph.
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Figure 1: Visualization of temporal summary structure: ranged full

clique (rfc). Resting-state sub-networks of interest are indicated by

node color (e.g., orange corresponds to the default mode network

‘DMN’, green to the sensorimotor network ‘SMN’).

Tracking evolution of communities in dynamic networks, rang-
ing from modules in protein-protein interaction networks [18] to
groups in scienti�c co-authorship networks [4], is of high relevance
for domain scientists. Especially in scienti�c �elds such as connec-
tomics, which explores the functional and structural connectivity
of the brain, visualization is a vital tool for pa�ern discovery [20].
Domain scientists may lack graph drawing skills, but their exper-
tise on the data at hand can be used to augment automatic graph
analysis and layout algorithms. How can we pair the speci�city
of domain expertise with the objectivity of graph summarization
output to depict the structure and evolution of dynamic graphs?
Instead of communicating results outside of the problem context,
we respond in the domain-speci�c ‘language’ of the user.

In this demo paper, we introduce ECOviz, a system that sup-
ports interactive, comparative analysis of time-evolving networks
by focusing on domain-speci�c summaries of their most salient
structures. For more holistic understanding, ECOviz also allows the
user to ‘zoom in’ on one time-evolving network and interactively
explore its discovered temporal pa�erns. Our system assimilates
domain knowledge in the following ways:

• Domain-speci�c Summarization: To assist the discov-
ery of coherent structures, we employ ‘semi-supervision’
that takes domain expertise into account early in the ex-
ploration process. �is is achieved using static graph de-
composition that is biased towards an egocentric view of
high-interest nodes. Figure 1 shows one temporal pa�ern
(full clique ranging time steps 11 and 12) in the summary
of a ‘mindful rest’ functional network of a human subject.



• Preprocessing-dependent Analysis: While most real-
world graphs are directly observed, many scienti�c do-
mains (including neuroscience) infer graphs from measure-
ments that are o�en in time series form. In response to
the sheer volume of graph construction choices, we o�er
an interactive way to evaluate a comparison of preprocess-
ing parameters. �e contrasting data analysis interface
includes data source selection provides complete �exibility
in making inter- and intra-data comparisons.

• Visualization of Communities: To highlight communi-
ties of high-interest nodes (via domain-speci�c labels) and
enable the extraction of richer insights, we provide quanti-
tative meta-summaries of the structures and use colors to
visually distinguish communities.

�e paper is organized as follows. In Section 2, we introduce
the application-speci�c data that motivated our system. �en in
Section 3 we present our domain-speci�c graph summarization
technique and in Section 4 we describe our system, ECOviz. Sec-
tions 5 and 6 give data analysis examples and our demonstration
plan, respectively. Finally, Sections 7 and 8 contain related work
and the conclusion.

2 CONNECTOMICS: DATA

While most real-world graphs are directly observed, functional
brain networks are inferred from biological signals. Namely, blood
oxygen level-dependent (BOLD) data from fMRI are a common
source to computational models [9]. Fully connected, undirected
graphs are typically constructed by computing the pairwise sta-
tistical dependence between all voxels (volume units of neurons).
�is step involves simulation over BOLD data to obtain per-voxel
time series. Pearson’s correlation coe�cient – or another measure
of association – is then computed pairwise between voxels. �ese
values (in absolute terms) are �ltered by a lower bound threshold,
forming an unweighted graph.

In this demonstration, we use a dataset that consists of fMRI
activity of 61 human subjects at both resting and mindful rest states.
During the regular resting state (8 minutes), the thoughts of the
subjects were allowed to wander about, while during the ‘mindful
rest’ state the subjects were instructed to focus on their breath and
actively not let their thoughts wander about.

Each fMRI session yields data using 100 ROI (region of interest)
parcellation, each of which is accompanied by time series of length
240 timeticks (30 measurements per minute). �roughout the paper,
we refer to ROIs as voxels or nodes. Out of the 100 voxels, 45 are part
of resting-state networks of interest and labeled accordingly. �e
seven sub-networks of interest are: dorsal a�ention (DAN), default
mode (DMN), fronto-parietal (FPN), language (LN), sensorimotor
(SMN), ventral a�ention (VAN), and primary visual (VN) networks.
Time-evolving Graph Construction. We convert the time series
per fMRI session to a time-evolving graph by extending the graph
generation procedure described above. Speci�cally, instead of gen-
erating one connectome for the whole duration of the session (8
minutes), we split the time series into non-overlapping intervals of
equal length and apply the generation process to each interval (i.e.,
each temporal snapshot is based on the statistical dependencies
between time series during the corresponding interval). A uniform

�ltering threshold is applied to all the resulting networks for pos-
itive correlation values only. �is leads to evolving snapshots of
functional connectivity and allows us to track changes in thoughts
(and their corresponding pa�erns) over time.

Two critical factors a�ect the construction of dynamic graphs:
time interval granularity of the per-voxel time series and threshold
value of the full association matrix. �ese choices can produce
drastically di�erent levels of sensitivity to noise for edge signi�-
cance and aggregation [27]. As such, poorly constructed graphs
can limit how well a summary captures true dynamics in the data.
For instance, the full clique ranging time steps 11 and 12 in Figure
1 was found in a network formed with a threshold of 0.30 (correla-
tion) and 12 time steps, yet its accuracy depends on how well the
graph represents the subject’s mindful rest state. We posit that prior
knowledge of the biological signals, in the form of sub-network
labels of voxels, can both indicate quality of graph construction
and bolster pa�ern discovery in fMRI data.

3 PROPOSED METHOD: DOMAIN-SPECIFIC

GRAPH SUMMARIZATION

Central to connectomics is �nding novel pa�erns of activity be-
tween functional regions of the brain, with the goal of elucidating
local and global organization. In contrast to the power law de-
gree distribution found in many large-scale networks, the brain
exhibits a small-world architecture, characterized by high local
clustering and short global path lengths [9]. Superimposed on the
structural tracts of the brain is a diverse, hierarchically organized
functional network [21], whose typical inference was described
in the introduction. We are particularly interested in mining the
relatively unknown dynamics within and between speci�c modules
(or sub-networks) of the functional network.

Current approaches in examining resting-state fMRI data include
model-dependent, or focused on a single seed region of interest that
is analyzed with respect to all other voxels, and model-free methods,
or unsupervised techniques that include independent component
analysis (ICA) [25]. While the former is simple and interpretable,
it lacks the exploration of global brain pa�erns that the la�er is
capable of. To gain bene�ts of both methods, we use labels from
resting-state networks, or functionally linked sub-networks that are
highly active during rest, to inform our summarization algorithm.

We leverage TimeCrunch [22], a principled and parameter-free
dynamic graph summarization algorithm. �e algorithm (i) creates
a set of subgraphs per static snapshot in the temporal graph; (ii)
labels these subgraphs as structures based on the MDL principle
(e.g., star, full clique, bipartite core); (iii) stitches static into temporal
structures; and (iv) compiles a summary of top structures using
again the MDL principle at the graph level. �e resultant network
summary consists of temporal pa�erns from the cross product of
a static vocabulary that captures connectivity pa�erns (full clique,
near clique, full bipartite core, near bipartite core, star, chain) and
a temporal vocabulary that captures recurrence pa�erns (ranged,
periodic, constant, �ickering, oneshot). For instance, a graph may
have a summary with several oneshot stars, a �ickering bipartite
core, and a periodic full clique.

In order to bene�t from domain knowledge consisting of the
nodes of interest (i.e., those belonging to speci�c sub-networks,



Figure 2: Full pipeline of graph summary visualization system. Major components include o�line preprocessing, ArangoDB & Flask API

back-end, and web interface (JavaScript) front-end.

such as the DMN in the brain), we propose a domain-speci�c sub-
graph extraction routine for the TimeCrunch [22] pipeline. Specif-
ically, instead of using the original clustering routine of Time-
Crunch, which is tailored towards real large-scale graphs with
power-law degree distribution, we extract labeled nodes’ egonets,
or induced subgraphs of an ego node and its neighbors, as subgraphs
for TimeCrunch and its static graph counterpart, VoG [15, 16]. We
mainly employ egonets to simulate the model-dependent approach
discussed previously, which uses seed ROIs for analysis of fMRI
functional networks. Egonets also provide natural communities
that partitioning algorithms targeting high-degree hub nodes – ill-
suited for the small-worldness of brain networks – may overlook.
�eir use in analysis of heterogeneous social networks, which also
have small-world properties, improved network abstraction [19].

4 SYSTEM OVERVIEW

In the following subsections, we discuss in detail the components
of ECOviz. A pictorial overview of our system and its various
components is given in Figure 2. Particular emphasis is placed on
how resting-state network labels are utilized across the length of
the entire pipeline.

4.1 Domain-speci�c Summarization

As described in Section 3, in place of the subgraph generation
in TimeCrunch and VoG, we utilize an egocentric approach to
partitioning the graph. �is is achieved by using voxels of par-
ticular interest to neuroscientists as seed nodes. Speci�cally, the
‘interesting’ voxels are the ones that participate in well-known
sub-networks, such as the default mode network (DMN) and other
networks presented in Section 2. Irrespective of the labeled node’s
network of origin, we use its egonet as a subgraph input to Time-
Crunch, resulting in a static total of 45 egonets per functional
network. �ese labeled nodes are indicated in the ‘labeled/total’
ratio and ‘entropy’ columns of the summary tables (see Figures 3,
4). �e former gives the number of labeled nodes per extracted
egonet, and the la�er is a measure of label diversity per egocentric
community (e.g., a value of 1 means that the nodes are uniformly
distributed among the sub-networks of interest).

For this demo, we extracted temporal summaries from 132 func-
tional brain networks spanning: 11 human subjects, two rest states
(resting and mindful rest state), and six combinations of prepro-
cessing parameters (thresholds of {0.30, 0.45} and time interval
granularity of {12, 16, 24}) for the time-evolving graph creation.

4.2 Interactive Visualization

To support divergent modes of data analysis, the system provides
two visualization views. ECOviz-Pair focuses on comparison be-
tween pairs of summaries di�ering in data source (i.e., subject and
rest state) or preprocessing method (i.e., threshold value and time
interval granularity). ECOviz-Time gives the user a more detailed
narrative of how each structure evolves over time. While the views
share a protocol for fetching structure connectivity, they di�er
in their interactivity and set of supporting features. Users inter-
act with both views through selection of drop-down menus, each
controlling a single parameter, at the top of the screen.
Preprocessing-dependent Analysis: A key feature of the system
is to enable scientists to not only make inter-data comparisons,
but also explore how tuning preprocessing parameters a�ects the
summary structures found. As graph generation depends on these
hyperparameters, we treat them as a set of se�ings that the user
may toggle at will. �us, the summarization results serve as implicit
feedback about graph generation quality.

In ECOviz-Pair, we focus on the notion of summary diversity as
an informal benchmark. To this end, three meta-summary charts
are shown to the user: percentage of structures by structure type,
node count by structure participation count, and top 10 node IDs by
structure participation count (see Figure 3). �e charts are displayed
in a two-column format – users may either compare rest with
mindful rest state of a single subject (Figure 5), or independently
select parameters for each column (Figure 3).

As ECOviz-Time (Figure 4) o�ers a sequential view of how tem-
poral structures evolve, we also display a chart that captures the
sparsity of each functional network over time. �is is intended to
provide context to whether temporal changes in structure density
are due to preexisting network structure. More concretely, a struc-
ture becoming denser over time could be due to preprocessing –
the chosen time interval granularity may have produced networks
with skewed temporal distributions of edges. For example, the



Figure 3: ECOviz-Pair contrasting data analysis view.

series of graph snapshots in Figure 4 appear to reach peak density
at time step 11 (bo�om-right cell), yet the network-wide sparsity
chart above suggests that it is a global trend. �is illustrates how

Figure 4: ECOviz-Time graph sequence of temporal summary struc-

ture: �ickering full clique (�c). Chart depicting graph sparsity over

time is positioned above structure visualizations.

the temporal summary chart can highlight local, structure-speci�c
trends in sparsity from those in the background.
Visualization of Communities: �e main component of the sys-
tem is a visualization of the summary structures, either at a particu-
lar time interval or a full time sequence. Since TimeCrunch mines
for a prede�ned vocabulary of static structures, which includes
cliques, bipartite cores, stars, and chains, we use this base repre-
sentation of the labeled structure in the visualization. Doing so
also allows the user to evaluate how well a structure’s connectivity
aligns with its label.

Most apparent in the visualization is the colored node represen-
tation of resting-state network labels. As the nodes within each
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